3.9.27 \(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2} \, dx\) [827]

3.9.27.1 Optimal result
3.9.27.2 Mathematica [A] (verified)
3.9.27.3 Rubi [A] (verified)
3.9.27.4 Maple [B] (verified)
3.9.27.5 Fricas [F(-1)]
3.9.27.6 Sympy [F]
3.9.27.7 Maxima [F(-1)]
3.9.27.8 Giac [F]
3.9.27.9 Mupad [F(-1)]

3.9.27.1 Optimal result

Integrand size = 23, antiderivative size = 148 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2} \, dx=-\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{\left (a^2-b^2\right ) d}-\frac {b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a \left (a^2-b^2\right ) d}+\frac {\left (a^2+b^2\right ) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a (a-b) (a+b)^2 d}+\frac {a \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \]

output
-(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2 
*c),2^(1/2))/(a^2-b^2)/d-b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c) 
*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/(a^2-b^2)/d+(a^2+b^2)*(cos(1/2*d* 
x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a+ 
b),2^(1/2))/a/(a-b)/(a+b)^2/d+a*sin(d*x+c)/(a^2-b^2)/d/(a+b*sec(d*x+c))/co 
s(d*x+c)^(1/2)
 
3.9.27.2 Mathematica [A] (verified)

Time = 3.72 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.55 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2} \, dx=\frac {\frac {4 a \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) (b+a \cos (c+d x))}-\frac {2 \left (-\frac {a^2 \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+2 b \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 b \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )+\frac {\left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 b (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (a^2-2 b^2\right ) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{b \sqrt {\sin ^2(c+d x)}}\right )}{a (a-b) (a+b)}}{4 d} \]

input
Integrate[1/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^2),x]
 
output
((4*a*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*(b + a*Cos[c + d*x])) 
- (2*(-((a^2*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b)) + 2*b*(2* 
EllipticF[(c + d*x)/2, 2] - (2*b*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2] 
)/(a + b)) + ((-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*b*(a + 
 b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (a^2 - 2*b^2)*EllipticPi[- 
(a/b), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(b*Sqrt[Sin[c + d*x] 
^2])))/(a*(a - b)*(a + b)))/(4*d)
 
3.9.27.3 Rubi [A] (verified)

Time = 1.45 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.51, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.739, Rules used = {3042, 4752, 3042, 4331, 27, 3042, 4594, 3042, 4274, 3042, 4258, 3042, 3119, 3120, 4336, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 4331

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int -\frac {-a \sec ^2(c+d x)+2 b \sec (c+d x)+a}{2 \sqrt {\sec (c+d x)} (a+b \sec (c+d x))}dx}{a^2-b^2}+\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\int \frac {-a \sec ^2(c+d x)+2 b \sec (c+d x)+a}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))}dx}{2 \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\int \frac {-a \csc \left (c+d x+\frac {\pi }{2}\right )^2+2 b \csc \left (c+d x+\frac {\pi }{2}\right )+a}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 4594

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {\int \frac {a^2+b \sec (c+d x) a}{\sqrt {\sec (c+d x)}}dx}{a^2}-\frac {\left (a^2+b^2\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)}dx}{a}}{2 \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {\int \frac {a^2+b \csc \left (c+d x+\frac {\pi }{2}\right ) a}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {\left (a^2+b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{2 \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 4274

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {a^2 \int \frac {1}{\sqrt {\sec (c+d x)}}dx+a b \int \sqrt {\sec (c+d x)}dx}{a^2}-\frac {\left (a^2+b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{2 \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {a^2 \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+a b \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}-\frac {\left (a^2+b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{2 \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{a^2}-\frac {\left (a^2+b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{2 \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {\left (a^2+b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{2 \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}-\frac {\left (a^2+b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{2 \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {\frac {2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}-\frac {\left (a^2+b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{2 \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 4336

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {\frac {2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}-\frac {\left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))}dx}{a}}{2 \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {\frac {2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}-\frac {\left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}}{2 \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 3284

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {\frac {2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}-\frac {2 \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a d (a+b)}}{2 \left (a^2-b^2\right )}\right )\)

input
Int[1/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^2),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/2*(((2*a^2*Sqrt[Cos[c + d*x]]*El 
lipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*b*Sqrt[Cos[c + d*x]]* 
EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d)/a^2 - (2*(a^2 + b^2)*Sqrt 
[Cos[c + d*x]]*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x] 
])/(a*(a + b)*d))/(a^2 - b^2) + (a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/((a^2 
- b^2)*d*(a + b*Sec[c + d*x])))
 

3.9.27.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4331
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[a*d^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1 
)*((d*Csc[e + f*x])^(n - 2)/(f*(m + 1)*(a^2 - b^2))), x] - Simp[d^2/((m + 1 
)*(a^2 - b^2))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)* 
(a*(n - 2) + b*(m + 1)*Csc[e + f*x] - a*(m + n)*Csc[e + f*x]^2), x], x] /; 
FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && LtQ[1, n, 2 
] && IntegersQ[2*m, 2*n]
 

rule 4336
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[d*Sqrt[d*Sin[e + f*x]]*Sqrt[d*Csc[e + f*x]]   Int[ 
1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4594
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2)   Int[(d*Csc[e + 
f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Simp[1/a^2   Int[(a*A - (A*b - a 
*B)*Csc[e + f*x])/Sqrt[d*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, 
B, C}, x] && NeQ[a^2 - b^2, 0]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.9.27.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(706\) vs. \(2(224)=448\).

Time = 11.99 (sec) , antiderivative size = 707, normalized size of antiderivative = 4.78

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\frac {2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )}{\left (a^{2}-a b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {2 b \left (\frac {a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{b \left (a^{2}-b^{2}\right ) \left (2 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-a +b \right )}-\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 \left (a +b \right ) b \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 b \left (a^{2}-b^{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 b \left (a^{2}-b^{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )}{2 b \left (a^{2}-b^{2}\right ) \left (a^{2}-a b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {3 b a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )}{2 \left (a^{2}-b^{2}\right ) \left (a^{2}-a b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{a}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(707\)

input
int(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/(a^2-a*b)*( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2* 
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a 
/(a-b),2^(1/2))-2*b/a*(a^2/b/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+ 
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*a*cos(1/2*d*x+1/2*c)^2-a+b)-1/2/(a 
+b)/b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*s 
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2* 
c),2^(1/2))+1/2*a/b/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x 
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*El 
lipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*a/b/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-1/2/b/(a^2-b^2 
)/(a^2-a*b)*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^( 
1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1 
/2*d*x+1/2*c),2*a/(a-b),2^(1/2))+3/2*b/(a^2-b^2)/(a^2-a*b)*a*(sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4 
+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/ 
2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.9.27.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^2,x, algorithm="fricas")
 
output
Timed out
 
3.9.27.6 Sympy [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2} \, dx=\int \frac {1}{\left (a + b \sec {\left (c + d x \right )}\right )^{2} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate(1/cos(d*x+c)**(3/2)/(a+b*sec(d*x+c))**2,x)
 
output
Integral(1/((a + b*sec(c + d*x))**2*cos(c + d*x)**(3/2)), x)
 
3.9.27.7 Maxima [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^2,x, algorithm="maxima")
 
output
Timed out
 
3.9.27.8 Giac [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^2,x, algorithm="giac")
 
output
integrate(1/((b*sec(d*x + c) + a)^2*cos(d*x + c)^(3/2)), x)
 
3.9.27.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \]

input
int(1/(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))^2),x)
 
output
int(1/(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))^2), x)